Cryptographie post-quantique : étude du décodage des codes QC-MDPC

Soutenance de thèse

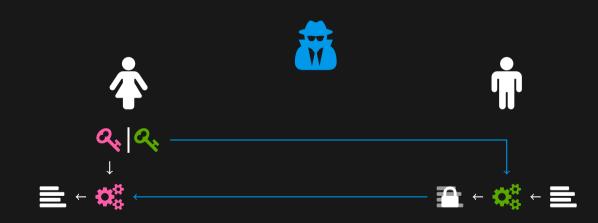
Valentin Vasseur

Université de Paris Inria

Monday 29th March, 2021

Introduction

Public key cryptography



Post-quantum cryptography

Quantum algorithm for cryptography

[Sho99]: Factorization & Discrete logarithm.

Post-quantum cryptography

Aims at being secure against an adversary with a quantum computer.

NIST Post-Quantum Cryptography Standardization Process — Round 3

	PKE/KEM	Signature	
Code	(3)	0	
Lattice	5	2	Classic McEliece
Hash	0	1	BIKE
Isogeny	1	0	HQC
Multivariate	0	2	\\\
Zero-knoweldge	0	1	

Peter W Shor. 'Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer', In: SIAM Review 2 (Jan. 1999).

Coding theory

(Binary) Linear code

 \mathbb{F}_2 -linear code \mathbb{C} of length n and dimension k:

linear subspace of \mathbb{F}_2^n of dimension k.

Generator matrix

Generator matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$:

rows form a basis of C.

Parity check matrix

Parity check matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$:

$$\mathbb{C} = \{ \mathbf{c} \in \mathbb{F}_2^n \, | \, \mathbf{H} \mathbf{c}^\intercal = \mathbf{0} \}$$
 .

Syndrome

Syndrome of $x \in \mathbb{F}_2^n$:

$$\mathbf{H}\mathbf{x}^{\mathsf{T}}\in\mathbb{F}_{2}^{n-k}$$
 .

Hard problems in code-based cryptography

Syndrome Decoding – SD

Instance: A parity check matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$, a syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$, a target weight t.

Property: There exists $e \in \mathbb{F}_2^n$ such that |e| = t and $He^T = s$.

Codeword Finding – CF

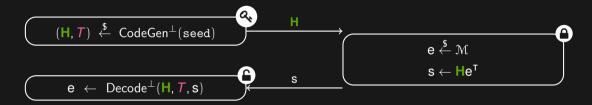
Instance: A parity check matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k)\times n}$, a target weight w > 0.

Property: There exists $e \in \mathbb{F}_2^n$ such that |e| = w and $He^T = 0$.

They were proven to be NP-complete in [BMT78].

Elwyn Berlekamp, Robert McEliece and Henk van Tilborg. 'On the inherent intractability of certain coding problems'. In: *IEEE Transactions on Information Theory* 3 (May 1978).

Niederreiter cryptosystem [Nie86]



- CodeGen[⊥]: Generates a public parity check matrix and a private trapdoor.
- Decode $^{\perp}$: Polynomial time decoder for any syndrome constructed from \mathfrak{M} .

Security relies on the difficulty of SD and the difficulty of finding the trapdoor.

Harald Niederreiter. 'Knapsack-type cryptosystems and algebraic coding theory'. In: *Problems of Control and Information Theory* 2 (1986).

Quasi-cyclic code

Circulant matrix

A circulant matrix is a matrix of the form

$$\mathbf{H} = \begin{pmatrix} h_0 & h_1 & \dots & h_{r-2} & h_{r-1} \\ h_{r-1} & h_0 & h_1 & & h_{r-2} \\ \vdots & h_{r-1} & h_0 & \ddots & \vdots \\ h_2 & & \ddots & \ddots & h_1 \\ h_1 & h_2 & \dots & h_{r-1} & h_0 \end{pmatrix} = \begin{pmatrix} h_0 & h_1 & \dots & h_{r-2} & h_{r-1} \\ & \mathbf{C} & & \mathbf{C} & & \end{pmatrix}.$$

Quasi-cyclic code

A quasi-cyclic code has a parity check matrix consisting of circulant blocks.

Double-circulant code

A double-circulant code has a parity check matrix consisting of two circulant blocks

$$\mathbf{H} = \begin{pmatrix} h_0 & h_1 \\ \mathbf{C} & \mathbf{C} \end{pmatrix}$$
 .

8

Polynomial representation

Polynomial ↔ Circulant matrix

$$\mathbf{H} = \begin{pmatrix} h_0 & h_1 & \dots & h_{r-2} & h_{r-1} \\ h_{r-1} & h_0 & h_1 & & h_{r-2} \\ \vdots & h_{r-1} & h_0 & \ddots & \vdots \\ h_2 & \ddots & \ddots & h_1 \\ h_1 & h_2 & \dots & h_{r-1} & h_0 \end{pmatrix} \xrightarrow{\sim} h_0 + h_1 x + \dots + h_{r-2} x^{r-2} + h_{r-1} x^{r-1} =: h$$

$$r \times r \text{ circulant matrices} \simeq \mathbb{F}_2[x]/(x^r - 1) =: \Re$$

Underlying problems and best known attacks

QC Syndrome Decoding - QCSD

Instance: $(h, s) \in \mathbb{R}^2$, an integer t > 0.

Property: There exists $(e_0, e_1) \in \mathbb{R}^2$ such that $e_0 + e_1 h = s$ and $|e_0| + |e_1| = t$.

QC Codeword Finding - QCCF

Instance: $h \in \mathbb{R}$, an even integer w > 0.

Property: There exists $(h_0, h_1) \in \mathbb{R}^2$ such that $h_1 + h_0 h = 0$ and $|h_0| + |h_1| = w$.

Asymptotically [CS15] best known attacks still cost the same as [Pra62], and with [Sen11]:

■ for QCSD,
$$\frac{2^{t(1+o(1))}}{\sqrt{r}}$$
 operations,

■ for QCCF,
$$\frac{2^{w(1+o(1))}}{r}$$
 operations.

Rodolfo Canto Torres and Nicolas Sendrier. 'Analysis of Information Set Decoding for a Sub-linear Error Weight'. In: *Post-Quantum Cryptography (PQCrypto)*. 2015.

Eugene Prange. 'The use of information sets in decoding cyclic codes'. In: *IRE Transactions on Information Theory* 5 (Sept. 1962).

Nicolas Sendrier. 'Decoding One Out of Many'. In: Post-Quantum Cryptography (PQCrypto). 2011.

Low / Moderate Density Parity Check codes

	LDPC	MDPC
Row weight Decoding capability	$w = \Theta(1)$ $t = \Theta(n)$	$w = \Theta(\sqrt{n})$ $t = \Theta(\sqrt{n})$

LDPC decoding algorithms can decode t errors with $t \cdot w < c \cdot n$ for some constant c < 1. Tradeoff between security and code length achieved for $t = \Theta(\sqrt{n})$ and $w = \Theta(\sqrt{n})$.

Quasi-Cyclic Moderate Density Parity Check [MTSB13]

A [n = 2r, r] *QC-MDPC code* has a quasi-cyclic parity check matrix $\begin{pmatrix} h_0 & h_1 \\ \mathbf{C} & \mathbf{C} \end{pmatrix}$ of row weight $\mathbf{w} = \Theta(\sqrt{n})$.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier and Paulo S. L. M. Barreto. 'MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes'. In: *IEEE International Symposium on Information Theory (ISIT)*. 2013.

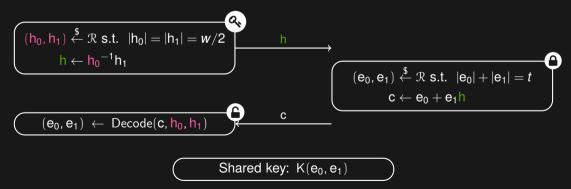
BIKE

Parameters

- r: block size,
- w: row weight,
- *t*: error weight.

Decoding

Decoding done with an efficient iterative probabilistic algorithm. It has a Decoding Failure Rate (DFR).



Needs a semantic security conversion to meet IND-CPA or IND-CCA requirements.

Summary on security

Requirements for λ bits of security [FO99; HHK17]

- 1. QCSD costs 2^{λ} operations, 2. QCCF costs 2^{λ} operations, 3. DFR $\leq 2^{-\lambda}$.
 - [GJS16] attack costs in the order of $\frac{1}{DFR}$ operations.

Eiichiro Fujisaki and Tatsuaki Okamoto. 'Secure Integration of Asymmetric and Symmetric Encryption Schemes'. In: *CRYPTO'99*. Santa Barbara, CA, USA, Aug. 1999.

Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. 'A modular analysis of the Fujisaki-Okamoto transformation'. In: *Theory of Cryptography Conference*. Springer. 2017.

Qian Guo, Thomas Johansson and Paul Stankovski. 'A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors'. In: Advances in Cryptology - ASIACRYPT. 2016.

[BIKE] IND-CCA parameters

Parameters: r, w, $t \in \mathbb{N}$, n = 2r, $w \simeq t \simeq \sqrt{n}$

λ	r	n	W	t
128	12323	24 646	142	134
192	24659	49318	206	199
256	40 973	81 946	274	264

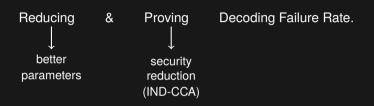
Carlos Aguilar Melchor, Nicolas Aragon, Paulo S L M Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Ghosh Santosh, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur and Gilles Zémor. *BIKE*. Aug. 2020.

NIST about BIKE

- "BIKE as one of the most promising code-based candidates"
- "serious questions about side-channel protections and CCA security"
- "need to be resolved before BIKE can be considered for standardization"
- "more time will be needed to address the security concerns listed"
- "not chosen to be a finalist but will advance to the third round for more study"

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson and Daniel Smith-Tone. 'Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process'. In: (July 2020).

Goal



 \rightarrow Improve performance and confidence in the system.

Contributions

- New decoders with low complexity and high performance
 - Backflip
 - Grey decoders
- Design statistical models
 - Precise model of one iteration accounting for the regularity of the code
 - Full Markovian model of a sequential decoder
- Estimate DFR
 - Extrapolation framework with confidence intervals based on decoding assumption
 - Analysis of weak keys with combinatorial properties that hinder decoding
 - Analysis of error floors

New decoding algorithm: Backflip

Nicolas Sendrier and Valentin Vasseur. 'About Low DFR for QC-MDPC Decoding'. In: *Post-Quantum Cryptography (PQCrypto)*. Paris, France, Apr. 2020

Original bitflipping algorithm

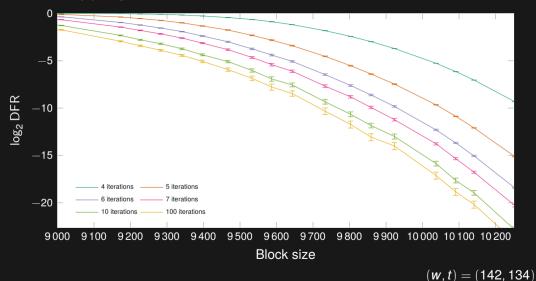
```
input : \mathbf{H} \in \mathbb{F}_2^{r \times n}, \mathbf{s} = \mathbf{H} \mathbf{e}^{\mathsf{T}} \in \mathbb{F}_2^r with |\mathbf{e}| \leqslant t
output: e' \in \mathbb{F}_2^n s.t. He'^T = s
e' \leftarrow 0: s' \leftarrow s - He'^T:
while s' \neq 0 do
      T \leftarrow \text{threshold}(context):
     for j \in \{0, ..., n-1\} do
    return e':
```

Problem of the original algorithm

Algorithm takes bad decisions (adds errors):

- hard to detect,
- hinder progress when too many.

Classic bitflipping



(V, l) = (142, 134)

Backflip ideas

Soft decision decoder

A soft decision decoder handles probabilities rather than bits

- ⇒ better decoding performance,
- \Rightarrow not as computationally efficient.

- Approach soft decision decoding:
 - limit the impact of a flip based on reliability,
 - counters give a reliability information.
- Each flip has a time-to-live (a few iterations):
 - for each flip, a ttl is computed,
 - most reliable flips live longer,
 - at each iteration revert expired flips.

Backflip algorithm

```
input : \mathbf{H} \in \mathbb{F}_2^{r \times n}, \mathbf{s} = \mathbf{H} \mathbf{e}^{\mathsf{T}} \in \mathbb{F}_2^r with |\mathbf{e}| \leqslant t
output: e' \in \mathbb{F}_2^n s.t. He'^T = s
e' \leftarrow 0: s' \leftarrow s - He'^T: D \leftarrow 0:
while s' \neq 0 do
       for i \in \{0, ..., n-1\} do
         if D_i = 0 then e'_i \leftarrow 0;
      s' \leftarrow s - He^{T}: T \leftarrow threshold(context):
       for j \in \{0, ..., n-1\} do
             if |\mathbf{s}' \star \mathbf{h}_i| \geqslant T then
             \begin{bmatrix} e_j' \leftarrow 1 - e_j'; \\ D_j \leftarrow \mathtt{ttl}(|s' \star h_j|) \end{bmatrix}
    s' \leftarrow s - He'^T:
return e':
```

```
H : parity check matrix
h<sub>j</sub> : j-th column of H
|s' ★ h<sub>j</sub>| : counter of position j
i.e. # unsatisfied equations
D : time-to-live of flips
```

Low additional cost of our variant

- each flip has a time-to-live,
- need extra memory to store,
- obsolete flips are reverted first at each iteration.

Thresholds and time-to-live function

Idea

ttl is an increasing function of the counter value σ .

Implementation

Thresholds T_1, T_2, \ldots, T_ℓ :

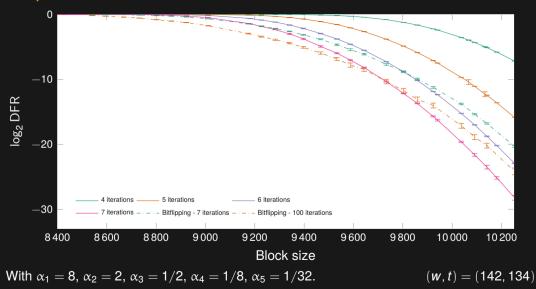
A flip survives i iterations if its counter is above T_i .

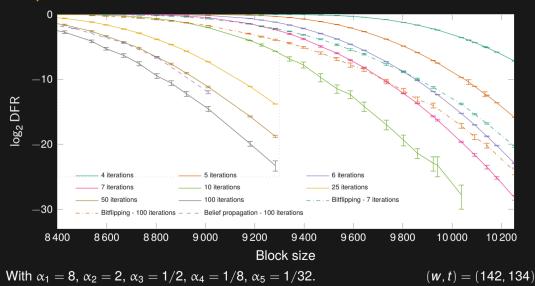
$$n \binom{w/2}{T_i} \pi_0^{T_i} (1-\pi_0)^{w/2-T_i} < \alpha_i$$

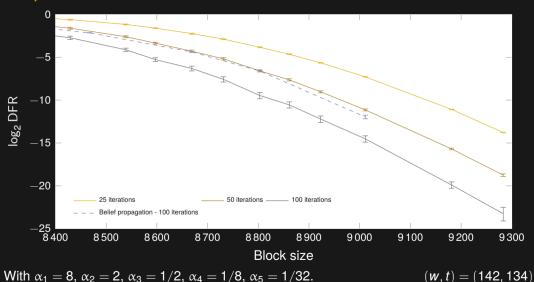
for some chosen constants $\alpha_1 > \alpha_2 > \cdots > \alpha_\ell > 0$ decreasing exponentially.

 π_0 :

- for a correct position, probability that an equation in which it is involved is unsatisfied,
- well estimated in a statistical model.







Statistical modeling of the bitflipping

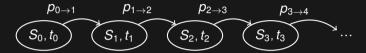
Nicolas Sendrier and Valentin Vasseur. 'On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders'. In: *Post-Quantum Cryptography (PQCrypto)*. Chongqing, China, May 2019

Step-by-step algorithm

```
input : \mathbf{H} \in \mathbb{F}_2^{r \times n}, \mathbf{s} = \mathbf{H} \mathbf{e}^{\mathsf{T}} \in \mathbb{F}_2^r with |\mathbf{e}| \leqslant t
                                                                                                              : Parity check matrix
output: e' \in \mathbb{F}_2^n s.t. He'^T = s
                                                                                                             : j-th column of H
                                                                                              |s' \star \mathbf{h}_i|: counter of position j
e' \leftarrow 0: s' \leftarrow s - He'^T:
                                                                                                                # unsatisfied equations
                                                                                                  i.e.
while s' \neq 0 do
      T \leftarrow \texttt{threshold}(\textit{context});
     i \leftarrow \mathtt{sample}(context);
     if |\mathbf{s}' \star \mathbf{h}_i| \geqslant T then
  We write, at iteration i:
                                                                                                           S_i := |\mathbf{s}'| = \left|\mathbf{H}(\mathbf{e} - \mathbf{e}')^\mathsf{T}\right|
return e';
                                                                                                             t_i := |\mathbf{e} - \mathbf{e}'|
```

26

Assumptions: Markov chain



■ The step-by-step algorithm is a time-homogeneous Markov chain.

Assumptions: Counters

- Counters are independent
- Numbers of errors per equation are independent

Counters

The counters σ_i follow binomial distributions [Cha17]:

$$\sigma_j \sim \mathsf{Bin}(w/2, \pi_1) \; \mathsf{if} \; j \in \mathsf{e} - \mathsf{e}' \; ,$$

with

$$\pi_1 = rac{\mathcal{S}_i + \overline{X}}{t_i w/2}$$
, $\pi_0 = rac{(w-1)\mathcal{S}_i - \overline{X}}{(n-t_i)w/2}$

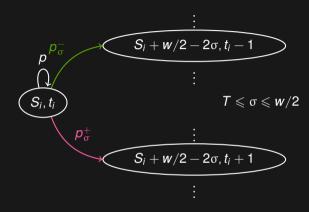
and $\overline{X} = \xi E[X | S_i, t_i]$ for some constant ξ ,

$$X = \left(\sum_{j \in \mathbf{e}} \left| \mathbf{s}' \star \mathbf{h}_j \right|
ight) - \left| \mathbf{s}'
ight| \,.$$

 $\sigma_i \sim \text{Bin}(\mathbf{w}/\mathbf{2}, \pi_0) \text{ if } \mathbf{i} \notin \mathbf{e} - \mathbf{e}'$.

Julia Chaulet. 'Étude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques'. French. PhD thesis. University Pierre et Marie Curie, Mar. 2017.

Transition diagram



When we flip the column
$$\mathbf{h}_{j}$$
, $\mathbf{s}' \leftarrow \mathbf{s}' + \mathbf{h}_{j}$

$$\underbrace{\left|\mathbf{s}' + \mathbf{h}_{j}\right|}_{S_{i+1}} = \underbrace{\left|\mathbf{s}'\right|}_{S_{j}} + \underbrace{\left|\mathbf{h}_{j}\right|}_{w/2} - 2\underbrace{\left|\mathbf{s}' \star \mathbf{h}_{j}\right|}_{\sigma}$$

Transitions

Transition probabilities are derived from the counters distributions

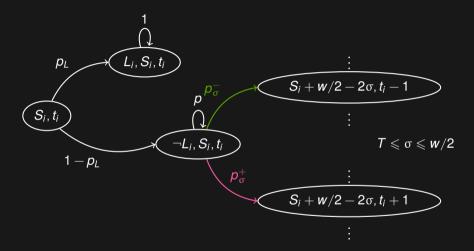
Problem

Model does not account for the situation where all the counters are below the threshold.

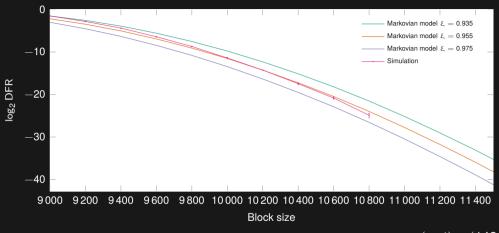
Solution

Add a special state in the FSM for this blocked decoder state.

Transition diagram

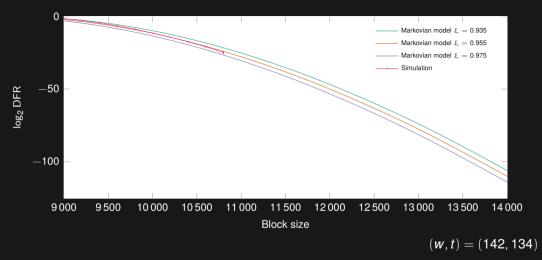


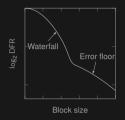
Results



$$(w, t) = (142, 134)$$

Results





Decoding assumption and validation

Nicolas Sendrier and Valentin Vasseur. 'On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders'. In: *Post-Quantum Cryptography (PQCrypto)*. Chongqing, China, May 2019

DFR curve behavior

■ Step-by-step algorithm

fixed (w, t), varying r

- Simple sequential bitflipping algoritm
- Modeled with a Markov chain allowing to predict its DFR
- Small difference between the DFR predicted and with simulation
- In the model, for large r, \log DFR is an affine function
- Simulation of several variants of decoding algorithm

fixed (w, t), varying r

- $r \mapsto \log \mathsf{DFR}(r, \mathcal{D})$ is a concave function
- Asymptotic result [Til18]

$$\mathbf{w} = \Theta(\sqrt{n}), t = \Theta(\sqrt{n})$$

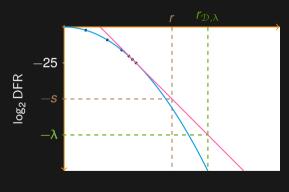
■ $r \mapsto \log \mathsf{DFR}(r, \mathcal{D})$ is upper bounded by a concave function of r

Jean-Pierre Tillich. The decoding failure probability of MDPC codes. Sept. 2018.

Decoding assumption

Assumption

For a given decoder \mathcal{D} , and a given security level λ , the function $r \mapsto \log \mathsf{DFR}(r, \mathcal{D})$ is concave.



Block size

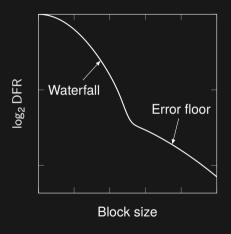
Decoding assumption

Assumption

For a given decoder \mathcal{D} , and a given security level λ , the function $r \mapsto \log \mathsf{DFR}(r, \mathcal{D})$ is concave if $\log \mathsf{DFR}(r, \mathcal{D}) \geqslant -\lambda$.

Block size

Error floor



Source of error floors [Ric03]

- Low weight codewords
- "Near codewords"

Tom Richardson. 'Error Floors of LDPC Codes'. In: 41st Annual Allerton Conference on Communication, Control, and Computing. 2003.

In a QC-MDPC code

Near-codeword

A (u, v) near-codeword is an error pattern of (small) weight u that produces a syndrome of (small) weight v.

$$s = h_0 e_0 + h_1 e_1$$

e ₀	e ₁	S	$ e_0 + e_1 $	s
C: low	weight code	ewords		$\#\mathfrak{C}=r$
x ⁱ h ₁	x^i h ₀	0	W	0
N: (w	/2, w/2) nea		$\# \mathfrak{N} = 2r$	
x^i h $_0$	0	x^i h ₀ ²	w/2	w/2
0	x^i h ₁	x^i h $_1^{\check{ extsf{2}}}$	w/2	w/2
2 \aleph : (w , ≈ w) near-codewords			#	\neq 2 $\mathbb{N}=r^2$
$x^i h_0$	<i>x</i> ^j h₁	$x^ih_0^2+x^jh_1^2$	W	$\approx w$

Impact of near-codewords on DFR

S: either \mathbb{C} or \mathbb{N} or $2\mathbb{N}$

 \mathcal{E} : set of all the error patterns

Problem

Decoding is impaired when the error pattern is close to an element of S

Experiment

Define $\mathcal{A}_{\delta,\mathcal{S}}$: set of vectors at distance exactly δ of \mathcal{S} For any $\delta>0$, generate error patterns of $\mathcal{A}_{\delta,\mathcal{S}}$ and evaluate

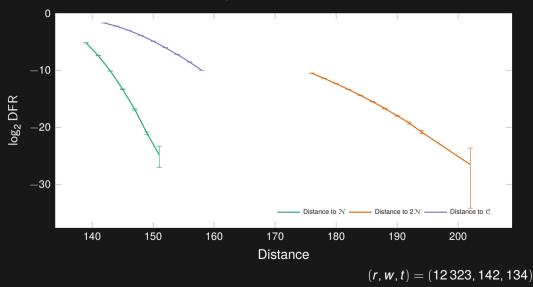
$$\mathsf{DFR}_{\mathcal{A}_{\delta,\mathcal{S}}}$$

Decoding assumption

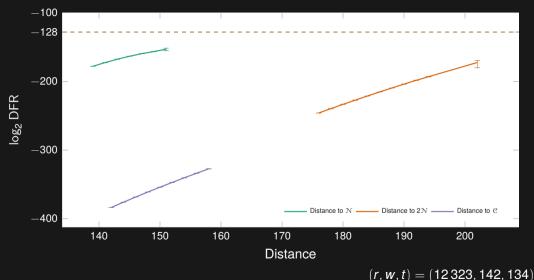
The decoding assumption is wrong if there exists a δ such that

$$\mathbf{2}^{-\lambda} < rac{\#\mathcal{A}_{\delta,\mathcal{S}}}{\#\mathcal{E}}\,\mathsf{DFR}_{\mathcal{A}_{\delta,\mathcal{S}}} < \mathsf{DFR}$$

DFR vs. distance with Backflip (7 iterations) - raw data



DFR vs. distance with Backflip (7 iterations) - weighted by density



40

Conclusion and perspectives

- New decoders with low complexity and high performance
 - Backflip
 - Grey decoders
- Design statistical models
 - Precise model of one iteration accounting for the regularity of the code
 - Full Markovian model of a sequential decoder
- Estimate DFR
 - Extrapolation framework with confidence intervals based on decoding assumption
 - Analysis of weak keys with combinatorial properties that hinder decoding
 - Analysis of error floors

Perspectives:

- Better understand the mechanics behind Backflip to have a better ttl function
- Improve model to estimate the syndrome weight distribution
- Understand the link between weak keys/near-codeword and counters correlations