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Post—quantum Cryptography
Quantum algorithm for cryptography
[Sho99]: Factorization & Discrete logarithm.

Post-quantum cryptography
Aims at being secure against an adversary with a quantum computer.

NIST Post-Quantum Cryptography Standardization Process — Round 3
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Peter W Shor. ‘Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer’. In: SIAM Review 2 (Jan. 1999).



Coding theory

(Binary) Linear code

F>-linear code € of length n and dimension k:

Generator matrix
Generator matrix G € Fy*":

Parity check matrix
Parity check matrix H € Fy" )"

Syndrome
Syndrome of x € FJ:

linear subspace of FJ of dimension k.

rows form a basis of C.
€ ={c e FJ|Hc" =0}.

Hx™ e ]Fg*k :



Hard problems in code-based cryptography
Syndrome Decoding — SD

Instance: A parity check matrix H € Fy" /%", a syndrome s € F§, a target weight t.

Property: There exists e € F such that |e =t and He™ =s.

Codeword Finding — CF

Instance: A parity check matrix H € F\" )", a target weight w > 0.

Property: There exists e € Fj such that |el = w and He™ = 0.

They were proven to be NP-complete in [BMT78].

Elwyn Berlekamp, Robert McEliece and Henk van Tilborg. ‘On the inherent intractability of certain coding
problems’. In: I[EEE Transactions on Information Theory 3 (May 1978).



Niederreiter cryptosystem [Nie86]

C (H,T) & CodeGen(seced) D

$
e+M

s + HeT
C e < Decodet(H, T,s) ? >

m CodeGen' : Generates a public parity check matrix and a private trapdoor.
m Decode’ : Polynomial time decoder for any syndrome constructed from M.

Security relies on the difficulty of SD and the difficulty of finding the trapdoor.

Harald Niederreiter. ‘Knapsack-type cryptosystems and algebraic coding theory’. In: Problems of Control and
Information Theory 2 (1986).



Quasi-cyclic code

Circulant matrix
A circulant matrix is a matrix of the form

hO h1 Ca hr,2 hr71
h—1  ho  hy hr—_o
H=| © h h . : = (ho h C' hr—2 hr1) .
h2 h1
h1 h2 0oo hr,«] ho

Quasi-cyclic code
A quasi-cyclic code has a parity check matrix consisting of circulant blocks.

Double-circulant code
A double-circulant code has a parity check matrix consisting of two circulant blocks

~ (hy hy
u=( ).



Polynomial representation

Polynomial «» Circulant matrix

ho hy ... h2 hry
hr—1 ho By hr—>
H=| : h-y h " [Shot+thx+ - +h ox2+h_x"=h
ho Yo, “o. h4
he  ha ... hq o

r x r circulant matrices Folx]/(x"—1) =R
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Underlying problems and best known attacks

QC Syndrome Decoding — QCSD

Instance: (h,s) € R?, aninteger t > 0.
Property: There exists (eg, 1) € R? such that ey + e1h = s and |eq| + |e4| = t.

QC Codeword Finding — QCCF

Instance: h € R, an even integer w > 0.
Property: There exists (hg, hy) € R? such that hy + hoh = 0 and |ho| + |hy| = w.

Asymptotically [CS15] best known attacks still cost the same as [Pra62], and with [Sen11]:

t(1+o(1)) w(1+0(1))

m for QCSD, 2 operations, m for QCCF, zfoperations.

\r

Rodolfo Canto Torres and Nicolas Sendrier. ‘Analysis of Information Set Decoding for a Sub-linear Error
Weight'. In: Post-Quantum Cryptography (PQCrypto). 2015.

Eugene Prange. ‘The use of information sets in decoding cyclic codes’. In: IRE Transactions on Information

Theory 5 (Sept. 1962).
Nicolas Sendrier. ‘Decoding One Out of Many’. In: Post-Quantum Cryptography (PQCrypto). 2011.




Low / Moderate Density Parity Check codes

LDPC MDPC

Row weight w=0(1) w=0(/n)
Decoding capability t=0(n) t=0(y/n)

LDPC decoding algorithms can decode t errors with t - w < ¢ - n for some constant ¢ < 1.

Tradeoff between security and code length achieved for t = ©(v/n) and w = O(+/n).

Quasi-Cyclic Moderate Density Parity Check [MTSB13]
A [n = 2r,r] QC-MDPC code has a quasi-cyclic parity check matrix (rg g) of row
weight w = ©(v/n).

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier and Paulo S. L. M. Barreto. ‘MDPC-McEliece: New
McEliece variants from Moderate Density Parity-Check codes’. In: IEEE International Symposium on Information
Theory (ISIT). 2013.



BIKE

Parameters Decoding
m r: block size, Decoding done with an efficient iterative probabilstic algorithm.
m w: row weight, It has a Decoding Failure Rate (DFR).

m {: error weight.

(ho,h1) & R s.t. Thol = Ihy| = w/2?

C+ eg+ey

< ho~'h
(0] 1 J s
(eg,e1) & R s.t. |egl+ el =t
—0Q_ .
J

( (eg,e1) + Decode(c, hg, h

( Shared key: K(eo, 1) )

Needs a semantic security conversion to meet IND-CPA or IND-CCA requirements. 12



Summary on security

Requirements for A bits of security [FO99; HHK17]
1. QCSD costs 2* operations,
IND-CPA
2. QCCF costs 2* operations, IND-CCA

3. DFRg 27N

m [GJS16] attack costs in the order of ﬁ operations.

Eiichiro Fujisaki and Tatsuaki Okamoto. ‘Secure Integration of Asymmetric and Symmetric Encryption
Schemes’. In: CRYPTO’99. Santa Barbara, CA, USA, Aug. 1999.

Dennis Hofheinz, Kathrin Hoévelmanns and Eike Kiltz. ‘A modular analysis of the Fujisaki-Okamoto
transformation’. In: Theory of Cryptography Conference. Springer. 2017.

Qian Guo, Thomas Johansson and Paul Stankovski. ‘A Key Recovery Attack on MDPC with CCA Security
Using Decoding Errors’. In: Advances in Cryptology - ASIACRYPT. 2016.



[BIKE] IND-CCA parameters

Parameters: r,w,te N, n=2r,w ~t~+/n

A r n w t

128 12323 24646 142 134
192 24659 49318 206 199
256 40973 81946 274 264

Carlos Aguilar Melchor, Nicolas Aragon, Paulo S L M Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Ghosh Santosh, Shay Gueron, Tim Guneysu, Rafael Misoczki,
Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur and Gilles Zémor. BIKE. Aug. 2020.
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NIST about BIKE

“BIKE as one of the most promising code-based candidates”

“serious questions about side-channel protections and CCA security”

“need to be resolved before BIKE can be considered for standardization”
“more time will be needed to address the security concerns listed”

“not chosen to be a finalist but will advance to the third round for more study”

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu,
Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson and Daniel Smith-Tone. ‘Status Report on
the Second Round of the NIST Post-Quantum Cryptography Standardization Process’. In: (July 2020).



Goal

Reducing & Proving Decoding Failure Rate.

| |

better security
parameters reduction
(IND-CCA)

— Improve performance and confidence in the system.



Contributions

m New decoders with low complexity and high performance
m Backflip
m Grey decoders
m Design statistical models
m Precise model of one iteration accounting for the regularity of the code
m Full Markovian model of a sequential decoder
m Estimate DFR

m Extrapolation framework with confidence intervals based on decoding assumption
m Analysis of weak keys with combinatorial properties that hinder decoding
m Analysis of error floors



New decoding algorithm: Backflip

Nicolas Sendrier and Valentin Vasseur. ‘About Low DFR for QC-MDPC Decoding'’. In:
Post-Quantum Cryptography (PQCrypto). Paris, France, Apr. 2020



Original bitflipping algorithm

input : He E)*", s =He' e Fj with|e| < ¢
output: e’ € Fi st He' =5
e+ 0;s' <« s—He'™;
while s’ =£ 0 do
T + threshold(context) ;
forje{0,..., n—1}do
if |s’ xhj| > T then
| e/« 1—¢;

s’ + s—He'™;

return e’;

H : Parity check matrix

h; : j-th column of H
|s”«hj| : counter of position j

ie. # unsatisfied equations

Problem of the original algorithm
Algorithm takes bad decisions (adds errors):

m hard to detect,
m hinder progress when too many.



Classic bitflipping

0 ==

log, DFR

4 iterations 5 iterations

6 iterations 7 iterations
—20

10 iterations 100 iterations

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 10100 10200
Block size

(w,t) = (142,134)
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Backflip ideas

Soft decision decoder
A soft decision decoder handles probabilities rather than bits

= better decoding performance,
= not as computationally efficient.

Backflip

m Approach soft decision decoding:
m limit the impact of a flip based on reliability,
m counters give a reliability information.

m Each flip has a time-to-live (a few iterations):

m for each flip, a tt1 is computed,
m most reliable flips live longer,
m at each iteration revert expired flips.

21



Backflip algorithm

input : HeF,*", s =He" € F} with le| < t

output: e’ € Fj s.t. He'" =s
e« 0;s'"<—s—He'";D«0;

while s’ £ 0 do
forj€{0,..., n—1}do
Dj(ﬁDj*‘I;

if D; = 0 then ej’eo;

forje{0,..., n—1}do
if |s’ xhj| > T then
e «—1—¢f;
Djettl(}s’*h/—})

s’ +s—He'";
return e’;

s’ + s—He'": T « threshold(context) ;

H . parity check matrix

h; : j-thcolumnofH

|s’ * h,-} : counter of position j
ie. # unsatisfied equations
D : time-to-live of flips

Low additional cost of our variant
m each flip has a time-to-live,
m need extra memory to store,

m obsolete flips are reverted first at
each iteration.

22



Thresholds and time-to-live function

ldea
ttl is an increasing function of the counter value o.

Implementation
Thresholds T4, To, ..., Ty: A flip survives i iterations if its counter is above T;.

n(WT{Z)ng"H —m)"/? T <
i

for some chosen constants oy > ax > - - > oy > 0 decreasing exponentially.

7o
m for a correct position, probability that an equation in which it is involved is unsatisfied,
m well estimated in a statistical model.

23



Backflip

log, DFR

4 iterations 5 iterations 6 iterations

7 iterations — - — . - Bitflipping - 7 iterations — . — . - Bitflipping - 100 iterations

8400 8600 8800 9000 9200 9400 9600 9800 10000 10200
Block size

With oy =8, o0 = 2, 03 = 1/2, o = 1/8, o5 = 1/32. (w, 1) = (142,134)
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Backflip

log, DFR

4 iterations 5 iterations 6 iterations
7 iterations 10 iterations 25 iterations

50 iterations 100 iterations — . — - - Bitflipping - 7 iterations

— . — - - Bitflipping - 100 iterations — — — Belief propagation - 100 iterations

8400 8600 8800 9000 9200 9400 9600 9800 10000 10200
Block size

With oy =8, o0 = 2, 03 = 1/2, o = 1/8, o5 = 1/32. (w, 1) = (142,134)
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Backflip

o —10
L
@)
[3\]
a0
S 15
—20
25 iterations 50 iterations 100 iterations
— — — Belief propagation - 100 iterations
—25
8400 8500 8600 8700 8800 8900 9000 9100 9200 9300
Block size
With oy =8, oo = 2, g = 1/2, o = 1/8, a5 = 1/32. (w, 1) = (142,134)

24



Statistical modeling of the bitflipping

Nicolas Sendrier and Valentin Vasseur. ‘On the Decoding Failure Rate of QC-MDPC
Bit-Flipping Decoders’. In: Post-Quantum Cryptography (PQCrypto). Chongqing, China,
May 2019
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Step-by-step algorithm

input : He F)*", s =He™ € Fj with|e| < t
output: e’ € Fj s.t. He' =s
e’ «0;s"«—s—He';
while s’ £ 0 do

T < threshold(context) ;

j < sample(context) ;

if |s’«hj| > T then

L e/ —1—¢;
s’ s—He';

return e’;

H : Parity check matrix

h; : j-thcolumnofH
|s’«h;| : counter of position

ie. # unsatisfied equations

We write, at iteration i:
S =8| =

t=le—e'|

He—¢e')'

26



Assumptions: Markov chain

Po—1 P12 P23 P34

m The step-by-step algorithm is a time-homogeneous Markov chain.

27



Assumptions: Counters

m Counters are independent
m Numbers of errors per equation are independent

Counters
The counters o; follow binomial distributions [Cha17]:
oj ~ Bin(W/2,7r1) Ifj €ce— e', 0j ~ Bin(W/z,T[Q) If_/ ¢ e—e’.
with
- _Si+y . _(W71)S,7Y
YT w2 O T(n—t)w/2

and X = £E[X|S;, t;] for some constant &,

X = Z|S'*hj| —|s’| .

jee

Julia Chaulet. ‘Etude de cryptosystémes a clé publique basés sur les codes MDPC quasi-cycliques’. French.
PhD thesis. University Pierre et Marie Curie, Mar. 2017.
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Transition diagram
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Transitions

Transition probabilities are derived from the counters distributions

Problem
Model does not account for the situation where all the counters are below the threshold.

Solution
Add a special state in the FSM for this blocked decoder state.

30



Transition diagram
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Results

Markovian model &

Markovian model &

Markovian model &

Simulation

logo DFR

9000 9200 9400 9600 9800 10000 10200 10400 10600 10800 11000 11200 11400
Block size

(w, 1) = (142, 134)
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logo DFR

—50

—100

9000

9500

10000

10500

11000

11500
Block size

12000

12500

Markovian model & = 0.935

Markovian model & = 0.955

Markovian model & = 0.975

Simulation
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Waterfall

log, DFR

Error floor|

Block size

Decoding assumption and validation

May 2019

Nicolas Sendrier and Valentin Vasseur. ‘On the Decoding Failure Rate of QC-MDPC
Bit-Flipping Decoders’. In: Post-Quantum Cryptography (PQCrypto). Chongqing, China,
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DFR curve behavior

m Step-by-step algorithm fixed (w, t), varying r
m Simple sequential bitflipping algoritm
m Modeled with a Markov chain allowing to predict its DFR
m Small difference between the DFR predicted and with simulation
m In the model, for large r, log DFR is an affine function

m Simulation of several variants of decoding algorithm fixed (w, t), varying r
m r — log DFR(r, D) is a concave function
m Asymptotic result [Til18] w =0(/n), t=0(/n)

m r — log DFR(r, D) is upper bounded by a concave function of r

Jean-Pierre Tillich. The decoding failure probability of MDPC codes. Sept. 2018.
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Decoding assumption

Assumption

For a given decoder D, and a given security level A, the function r — log DFR(r, D) is
concave.

Block size
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Decoding assumption

Assumption
For a given decoder D, and a given security level A, the function r — log DFR(r, D) is

concave if log DFR(r, D) > —A.

Block size
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Error floor

Source of error floors [Ric03]

m Low weight codewords
m “Near codewords”

- Waterfall

Error floor

log, DFR

Block size

Tom Richardson. ‘Error Floors of LDPC Codes'. In: 41st Annual Allerton Conference on Communication,
Control, and Computing. 2003.
36



In a QC-MDPC code
Near-codeword
A (u, v) near-codeword is an error pattern of (small) weight u that produces a syndrome of
(small) weight v.

s = hpep + hieq

€o e s leol + le1] Is|
C: low weight codewords #C=r
x'hy x'ho 0 w 0
N: (w/2,w/2) near-codewords #N =2r
x'ho 0 x'hj w/2 w/2
0 x'hy x'h? w/2 w/2
2N: (w, ~ w) near-codewords #oN = r?

x'ho xhy x'h3 + x/h2 w ~w




Impact of near-codewords on DFR

8: either € or N or 2N &: set of all the error patterns
Problem
Decoding is impaired when the error pattern is close to an element of 8

Experiment

Define As s: set of vectors at distance exactly b of §
For any 6 > 0, generate error patterns of As g and evaluate

DFR 4,

Decoding assumption

The decoding assumption is wrong if there exists a & such that

#As.s
#E

2 < DFR4, , < DFR

38



DFR vs. distance with Backilip (7 iterations) - raw data

log, DFR

Distance to N Distance to 2N Distance to €

140 150 160 170 180 190 200
Distance

(r.w,t) = (12323, 142, 134)
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DFR vs. distance with Backflip (7 iterations) - weighted by density

—100
—128

—200

log, DFR

—300

Distance to N Distance to 2N Distance to €

—400
140 150 160 170 180 190 200
Distance

(r.w,t) = (12323, 142, 134)
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Conclusion and perspectives

m New decoders with low complexity and high performance

m Backflip
m Grey decoders

m Design statistical models

m Precise model of one iteration accounting for the regularity of the code
m Full Markovian model of a sequential decoder

m Estimate DFR

m Extrapolation framework with confidence intervals based on decoding assumption
m Analysis of weak keys with combinatorial properties that hinder decoding
m Analysis of error floors

Perspectives:
m Better understand the mechanics behind Backflip to have a better tt1 function
m Improve model to estimate the syndrome weight distribution
m Understand the link between weak keys/near-codeword and counters correlations

41
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